PTEN loss does not predict for response to RAD001 (Everolimus) in a glioblastoma orthotopic xenograft test panel.
نویسندگان
چکیده
PURPOSE Hyperactivation of the phosphatidylinositol 3-kinase/Akt signaling through disruption of PTEN function is common in glioblastoma multiforme, and these genetic changes are predicted to enhance sensitivity to mammalian target of rapamycin (mTOR) inhibitors such as RAD001 (everolimus). EXPERIMENTAL DESIGN To test whether PTEN loss could be used as a predictive marker for mTOR inhibitor sensitivity, the response of 17 serially transplantable glioblastoma multiforme xenografts was evaluated in an orthotopic therapy evaluation model. Of these 17 xenograft lines, 7 have either genomic deletion or mutation of PTEN. RESULTS Consistent with activation of Akt signaling, there was a good correlation between loss of PTEN function and elevated levels of Akt phosphorylation. However, of the 7 lines with disrupted PTEN function, only 1 tumor line (GBM10) was significantly sensitive to RAD001 therapy (25% prolongation in median survival), whereas 1 of 10 xenograft lines with wild-type PTEN was significantly sensitive to RAD001 (GS22; 34% prolongation in survival). Relative to placebo, 5 days of RAD001 treatment was associated with a marked 66% reduction in the MIB1 proliferation index in the sensitive GBM10 line (deleted PTEN) compared with a 25% and 7% reduction in MIB1 labeling index in the insensitive GBM14 (mutant PTEN) and GBM15 (wild-type PTEN) lines, respectively. Consistent with a cytostatic antitumor effect, bioluminescent imaging of luciferase-transduced intracranial GBM10 xenografts showed slowed tumor growth without significant tumor regression during RAD001 therapy. CONCLUSION These data suggest that loss of PTEN function is insufficient to adequately predict responsiveness to mTOR inhibitors in glioblastoma multiforme.
منابع مشابه
RAD001 (everolimus) improves the efficacy of replicating adenoviruses that target colon cancer.
Selectively replicating adenoviruses have the potential to cure cancer but have shown little efficacy in clinical trials. We have tested the ability of the mTOR kinase inhibitor RAD001 (everolimus) to enhance the response of xenografts to an oncolytic adenovirus. The virus has Tcf sites inserted in the early viral promoters and replicates selectively in cells with activation of the Wnt signalin...
متن کاملIdentification of molecular characteristics correlated with glioblastoma sensitivity to EGFR kinase inhibition through use of an intracranial xenograft test panel.
In the current study, we examined a panel of serially passaged glioblastoma xenografts, in the context of an intracranial tumor therapy response model, to identify associations between glioblastoma molecular characteristics and tumor sensitivity to the epidermal growth factor receptor (EGFR) kinase inhibitor erlotinib. From an initial evaluation of 11 distinct glioblastoma xenografts, two erlot...
متن کاملPreclinical Development Vascular Disruption in Combination with mTOR Inhibition in Renal Cell Carcinoma
Renal cell carcinoma (RCC) is an angiogenesis-dependent andhypoxia-drivenmalignancy.As a result, there has been an increased interest in the use of antiangiogenic agents for the management of RCC in patients. However, the activity of tumor-vascular disrupting agents (tumor-VDA) has not been extensively examined against RCC. In this study, we investigated the therapeutic efficacy of the tumor-VD...
متن کاملPreclinical testing of clinically applicable strategies for overcoming trastuzumab resistance caused by PTEN deficiency.
PURPOSE We have previously shown that PTEN loss confers trastuzumab resistance in ErbB2-overexpressing breast cancer using cell culture, xenograft models, and patient samples. This is a critical clinical problem because trastuzumab is used in a variety of therapeutic regimens, and at the current time, there are no established clinical strategies to overcome trastuzumab resistance. Here, we did ...
متن کاملEGFR Gene Overexpression Retained in an Invasive Xenograft Model by Solid Orthotopic Transplantation of Human Glioblastoma Multiforme Into Nude Mice
Orthotopic xenograft animal model from human glioblastoma multiforme (GBM) cell lines often do not recapitulate an extremely important aspect of invasive growth and epidermal growth factor receptor (EGFR) gene overexpression of human GBM. We developed an orthotopic xenograft model by solid transplantation of human GBM into the brain of nude mouse. The orthotopic xenografts sharing the same hist...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Clinical cancer research : an official journal of the American Association for Cancer Research
دوره 14 12 شماره
صفحات -
تاریخ انتشار 2008